МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КОЛЬСКИЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК» (ФИЦ КНЦ РАН)

УТВЕРЖДАЮ

Заместитель генерального директора ФИЦ КНЦ РАН по научной работе, кандидат биологических наук

Е.А. Боровичев

15 марта 2022 г.

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО СПЕЦИАЛЬНОЙ ДИСЦИПЛИНЕ

Образовательная программа высшего образования — программа подготовки научных и научно-педагогических кадров в аспирантуре научная специальность — 2.8.6. Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика

ВВЕДЕНИЕ

Программа предназначена для поступающих в аспирантуру ФИЦ КНЦ РАН по научной специальности 2.8.6 Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика.

Поступающий должен показать знания программного содержания теоретических дисциплин, иметь представление о фундаментальных работах и публикациях периодической печати в избранной области, ориентироваться в проблематике дискуссий и критических взглядов ведущих ученых по затрагиваемым вопросам, уметь логично излагать материал, показать навыки владения исследовательским аппаратом применительно к области специализации и сфере деятельности.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО СДАЧЕ ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА В АСПИРАНТУРУ

Поступающие в аспирантуру должны продемонстрировать:

- глубокие теоретические знания в области избранной научной дисциплины;
- достаточно полное представление об источниках, фундаментальных работах и последних достижениях науки в данной области;
- способность ориентироваться в дискуссионных проблемах избранной отрасли науки;
- способность владением понятийно-исследовательским аппаратом применительно к области специализации;
 - умение логично, аргументировано излагать материал.

КРИТЕРИИ ЭКЗАМЕНАЦИОННОЙ ОЦЕНКИ

Оценка "отлично" ставится, если абитуриент:

- дает исчерпывающий ответ, демонстрирует знание альтернативных точек зрения по анализируемой проблеме, отечественного и зарубежного опыта;
- владеет современной нормативной базой, умеет раскрыть роль анализируемого явления в российской и мировой экономике;
- умеет аргументировать свою точку зрения, делать самостоятельные выводы и рекомендации;
- владеет научной терминологией и безошибочно раскрывает содержание используемых терминов, грамотно, литературно, логично излагает материал.

Оценка "хорошо" ставится, если абитуриент:

- дает полный ответ на поставленные вопросы, демонстрирует знание основных альтернативных точек зрения по анализируемой проблеме, отечественного и зарубежного опыта;
 - владеет основными нормативными материалами по анализируемой проблеме;
- умеет оценить значение анализируемого явления для российской и мировой экономики;
 - умеет аргументировать ключевые положения ответа, делать самостоятельные

выводы и рекомендации;

• в целом владеет научной терминологией, но в отдельных случаях не может раскрыть содержание используемых терминов, грамотно, логично излагает материал.

Допускается 1-2 незначительные ошибки, фактические и/или смысловые.

Оценка "удовлетворительно" ставится, если абитуриент:

- дает недостаточно полный ответ, демонстрирует знание отдельных, не всегда наиболее важных альтернативных точек зрения по анализируемой проблеме, не имеет системных представлений об отечественном и зарубежном опыте;
 - не владеет основными нормативными материалами по анализируемой проблеме;
- испытывает серьезные затруднения при попытке оценить значение анализируемого явления для российской и мировой экономики;
- испытывает серьезные затруднения при попытках аргументировать ключевые положения ответа, сделать самостоятельные выводы и рекомендации;
- недостаточно владеет научной терминологией и часто испытывает затруднения при определении содержания используемых терминов;
- в целом способен логично изложить материал, однако допускает существенные ошибки с точки зрения логической последовательности.

Допускается не более 3-4 ошибок, фактических и/или смысловых.

Оценка "неудовлетворительно" ставится, если абитуриент:

- дает ответ, который носит фрагментарный характер, не знает альтернативных точек зрения по анализируемой проблеме, имеет поверхностные представления об отечественном и зарубежном опыте;
 - не владеет нормативными материалами по анализируемой проблеме;
- не способен оценить значение анализируемого явления для российской и мировой экономики;
- не в состоянии аргументировать ключевые положения ответа, сделать самостоятельные выводы и рекомендации;
- не владеет научной терминологией, не способен определить содержание используемых терминов;
 - не может логично изложить материал.

РАЗДЕЛЫ ДИСЦИПЛИНЫ, РАССМАТРИВАЕМЫЕ В ХОДЕ ИСПЫТАНИЯ

1. Геомеханика

Основные представления о геомеханике как науке о механических явлениях и процессах в земной коре, вызываемых природными и техногенными воздействиями, и ее объекте – массиве горных пород, являющемся частью земной коры.

Понятие о массивах горных пород, их физических состояниях и важнейших физико-механических свойствах, модели массива, в том числе иерархично-блочная модель массива горных пород. Методы определения свойств горных пород. Напряженное состояние горных пород. Особенности деформирования и разрушения горных пород и массивов в условиях объёмного напряженно-деформированного состояния, включая

область запредельного деформирования. Устойчивость обнажений пород в горных выработках. Основные гипотезы горного давления. Современные способы обеспечения устойчивости горных выработок. Динамические проявления геомеханических процессов в виде горных ударов и внезапных выбросов; их прогноз и предупреждение. Основные признаки удароопасности и выбросоопасности пород. Геодинамическое районирование.

2. Разрушение горных пород

Особенности применения взрыва при открытом и подземном способе разработки месторождения. Классификация взрывчатых веществ (ВВ), средств взрывания и области их эффективного применения. Системы электрического и неэлектрического инициирования зарядов ВВ.

Современные представления о разрушении твердых сред при взрывных нагрузках, физические и механические модели разрушения горных пород взрывом. Распространение волн напряжений в трещиноватых средах и влияние соударений отдельностей на результативность взрыва. Методы анализа законов распределения кусковатости взорванной горной массы, определение размеров среднего куска и показателя равномерности дробления. Методы управления энергией взрыва при выполнении различных видов работы (выброс, перемещение, дробление) в условиях горного предприятия. Методы расчета параметров БВР при взрыве системы скважинных зарядов. Особенности действия взрыва зарядов ВВ в зажатой среде. Оценка результатов взрыва и основные технико-экономические критерии эффективности.

Закономерности формирования и распространения сейсмических волн и ударной воздушной волны при массовых взрывах. Основные экологические проблемы и методы их решения при ведении взрывных работ.

Способы бурения и расширения шпуров и скважин. Вращательное, ударновращательное, шарошечное, термическое, электротермическое, электрофизическое, гидравлическое, гидромеханическое и другие комбинированные способы бурения. Влияние основных физико-механических свойств горных пород на показатели бурения и расширения шпуров и скважин, энергоемкость разрушения. Разрушение негабаритов. Способы, техника и технология взрывного, механического, термического, электрофизического разрушения. Механизм разрушения и расчет параметров разрушения каждым из указанных способов.

3. Рудничная аэрогазодинамика

Рудничная газодинамика шахт и рудников. Рудничная атмосфера: физические и химические свойства газов. Основные законы аэростатики и аэродинамики применительно к рудничной атмосфере.

Режимы движения воздуха в шахтах (рудниках). Природа турбулентности. Основные характеристики турбулентности в шахтных вентиляционных потоках. Фильтрационные течения. Критическое число Рейнольдса.

Природа аэродинамических сопротивлений элементов шахтной вентиляционной сети: сопротивление трения, местные и лобовые сопротивления. Закон сопротивления горных выработок, выработанных пространств.

Статика и динамика рудничных вентиляционных систем. Газодинамические процессы в шахтах (рудниках) и их характеристики. Переходные газодинамические процессы в шахтных вентиляционных системах. Основные закономерности

аэрогазодинамики тупиковых выработок и камер, выемочных участков, выработанных пространств.

Аэрология карьеров. Состав атмосферы карьеров и предъявляемые к нему требования. Вредные примеси атмосферного воздуха, их свойства, предельно допустимые концентрации. Источники загрязнения атмосферы карьеров пылью и газами, их виды. Методы и средства контроля состояния атмосферы.

Микроклимат карьеров и его влияние на воздухообмен. Основные элементы микроклимата карьеров. Температурная стратификация атмосферы в карьерах. Возникновение воздушных потоков в результате неравномерного распределения тепла по бортам карьера.

Проветривание карьеров за счет энергии ветра. Конвективная схема проветривания (условия возникновения, схемы движения воздуха, скорость и режим движения воздуха, вынос вредностей из карьера). Инверсионная схема движения воздуха (условия возникновения, схемы движения воздуха, Скорость накопления вредностей в карьерном пространстве). Комбинированные схемы проветривания.

Способы и средства нормализации атмосферы карьеров. Создание комфортных условий в кабинах горных и транспортных машин. Пылеулавливание. Нейтрализация вредных газов. Снижение запыленности воздуха при массовых взрывах. Основы проектирования вентиляции карьеров.

4. Горная теплофизика

Основы термодинамики горных пород. Термодинамические системы. Термодинамические процессы. Энтальпия и энтропия термодинамических процессов. Термодинамическая вероятность. Фазовые переходы в горных породах. Тепловые эффекты химических реакций. Закон Гесса. Тепловые свойства твердых тел. Изменение свойств горных пород и минералов в зависимости от температуры.

Тепломассоперенос. Основной закон теплопроводности. Дифференциальное уравнение теплопроводности. Краевые условия. Критерии подобия в термодинамике. Виды теплоносителей и теплообмена. Пограничный слой и механизм конвективного теплообмена. Определение термодинамических параметров теплоносителей. Методы расчета параметров нагрева твердых тел.

Теплообмен в горных выработках. Требования к тепловому режиму в подземных выработках. Каналы теплообмена человека. Источники тепла в горных выработках. Методы нормализации температурного режима рудничного воздуха.

Промерзание связных пород на открытых разработках. Уравнение колебаний температуры внешней среды. Расчет глубины промерзания. Расчет толщины и свойств теплоизоляционных покрытий с целью полного или частичного предотвращения промерзания пород. Технология получения теплоизоляционных покрытий.

Термическое разрушение горных пород. Разрушение плавлением. Хрупкое термическое разрушение (XTP). Термическое бурение шпуров и скважин, термическое расширение скважин (техника, технология, режимы и параметры, область применения).

Скважинные геотехнологии добычи полезных ископаемых на основе теплофизики. Подземная выплавка серы (условия применения, тепловой баланс, расчет параметров, техника и технология).

Подземная газификация твердого топлива (частичная и полная газификация угля, механизм газификации, канал газификации, его формирование и пространственно временные параметры, техника и технология подземной газификации угля).

Термические процессы при подготовке рудного сырья к металлургическому переделу. Обжиг окатышей и брикетов, агломерация руд (механизм спекания, восстановительные и окислительные процессы, расчет параметров нагрева с учетом фазовых переходов и тепловых эффектов, техника и технология).

Рекомендуемая литература к разделу 1

- 1. Баклашов И.В. Геомеханика. Т.1. Основы геомеханики: учебник /И.В. Баклашов. М.: Изд-во МГГУ, 2004. 208 с.
- 2. Баклашов И.В. Геомеханика. Т.2. Геомеханические процессы: учебник /И.В. Баклашов и др. М.: Изд-во МГГУ, 2004. 248 с.
- 3. Булычев Н.С. Механика подземных сооружений. Учеб. для Вузов, 2-е изд., М., Недра, 1994. 270 с.
- 4. Геодинамика массивов и динамика выработок глубоких рудников /В.П. Трушко, А.Г. Протосеня, П.Ф. Матвеев, Х.М.Совмен. Санкт-Петербургский горн. ин-т. СПб., 2000. 296 с.
- 5. Геомеханика. Учебное пособие / Э.В. Каспарьян, А.А. Козырев, А.Б. Макаров и др. М.: Высш. шк., 2006. 503 с.
- 6. Казикаев Д.М. Геомеханика подземной разработки руд: учебник /Д.М.Казикаев. М.: Изд-во Моск. горн. ун-та, 2005. 542 с.
- 7. Ковалев О.В. Управление состоянием горного массива при подземной разработке пластовых месторождений: лаб. практикум /О.В. Ковалев, И.Ю. Тхориков, С.В. Васильев. СПб.: Изд-во СПб.ГГТУ, 2003. 50 с.
- 8. Механика грунтов. Ч.1. Основы геотехники. Учебник. М. СПб., 2000. 201 с.
- 9. Певзнер М.Е. Геомеханика: учебник /М.Е. Певзнер, М.А. Иофис, В.Н. Попов. М.: Изд-во МГГУ, 2005. 438 с.
- 10. Посыльный Ю.В. Типовые параметры процесса сдвижения земной поверхности при горных разработках. Учеб. пособие /Ю.В. Посыльный. Новочеркасск, 2003. 155 с.
- 11. Рыльникова М.В. Геомеханика: учеб. пособие /М.В. Рыльникова, О.В. Зотеев. М.: Изд. дом "Руда и Металлы", 2003. 240 с.
- 12. Устойчивость бортов карьеров и отвалов: метод. Пособие / Сост. В.В. Рыбин. МГТУ. Мурманск, 2011. 22 с.
- 13. Чумичев А.М. Методы и средства контроля свойств и состояния сред. Учебное пособие для студентов горных вузов и факультетов. Ч.1. М., 1999. 173 с.

Рекомендуемая литература к разделу 2

- 1. Каркашадзе Γ . Γ . Механическое разрушение горных пород: учебник / Γ . Γ . Каркашадзе. М.: Изд-во МГГУ, 2004. 222 с.
- 2. Кутузов Б.Н. Разрушение горных пород взрывом. Взрывные технологии в промышленности. М.: Изд. МГТУ, 1994. 445 с.
- 3. Матвейчук В.В. Взрывное дело (внимание, взрыв): учеб. пособие /В.В. Матвейчук. М.: Академ. проект, 2005. 505 с.

- 4. Пестриков В.М. Механика разрушения твердых тел. Курс лекций /В.М Пестриков, Е.М. Морозов. СПб.: Профессия, 2002. 300 с.
- 5. Протасов Ю.И. Разрушение горных пород. Учебник /Ю.И. Протасов. М.: Издво МГУ, 2002. 453 с.
- 6. Технология и безопасность буровзрывных работ. Ч.1 /Ю.А. Епимахов, Г.С. Торочков, В.П. Абрамчук, А.Ю. Педчик, Г.В. Додонов, Н.В. Баранов; Отв.ред. В.В. Гущин. РАН, Кол. науч. центр, ГоИ. Апатиты, 2000. 216 с.
- 7. Технология и безопасность буровзрывных работ. Учеб. пособие. Часть 2. /Ю.А. Епимахов, Г.С. Торочков, В.П. Абрамчук и др. РАН, Кол. науч. центр, ГоИ, 2001. 205 с.

Рекомендуемая литература к разделу 3

- 1. Битколов Н.З., Медведев И.И. Аэрология карьеров. Учебник для ВУЗов. М.: Недра, 1992. 272 с.
- 2. Вассерман А.Д. Проектные обоснования параметров вентиляции рудников и подземных сооружений. Л.: Наука, 1988.
- 3. Вассерман А.Д., Алехичев С.П., Максимов Е.Г. Методы оценки вентиляционных систем рудников. Л.: Наука, 1974.
- 4. Зорин А.В. Аэрология карьеров: учеб. пособие. Петрозаводск: Изд-во ПетрГУ, 2012.-114 с.
- 5. Никитин В.С., Битколов Н.З. Проектирование вентиляции в карьерах. М., Недра, 1980. 171 с.
- 6. Пучков Л.А. Аэродинамика подземных выработанных пространств. М.: Издво МГГУ, 1993. 267 с.
- 7. Рогалев В.А. Нормализация атмосферы горнорудных предприятий. М., Недра, 1993.
- 8. Средства комплексного обеспыливания горных предприятий: Спр. М.: $Hедра,1991.-256\ c.$
- 9. Ушаков К.З., Бурчаков А.С., Пучков Л.А., Медведев И.И. Аэрология горных предприятий. М.: Недра, 1987 г.

Рекомендуемая литература к разделу 4

- 1. Бобров А.И., Аверин Г.В. Теоретические основы переноса импульса, тепла и примеси в горных выработках. Макеевка-Донбасс: Изд-во МакНИИ, 1994. 270 с.
- 2. Дмитриев А.П., Гончаров С.А. Термодинамические процессы в горных породах. Учебник, М., Недра, 1991.
- 3. Дядькин Ю.Д., Гендлер С.Г., Смирнова Н.Н. Геотермальная теплофизика. СПб., Наука, 1993.
- 4. Дядькин Ю.Д., Шувалов Ю.В. и др. Теплофизические аспекты освоения ресурсов недр. Л., Недра, 1988.
 - 5. Лыков А.В. Тепломассообмен. М.: Энергия, 1972.
- 6. Насонов И.Д., Щуплик М.Н. Закономерности формирования ледопородных ограждений при строительстве стволов шахт способом замораживания. М., Недра, 1976.
- 7. Шувалов Ю.В., Кравченко В.Н. Тепловой режим глубоких рудников. М., Недра, 1993.